
Square-mean convergence of Fourier series
Sine series
Haar series

Mean-square convergence of Fourier series

ACM 07

June 4, 2008

ACM 07 Mean-square convergence of Fourier series



Square-mean convergence of Fourier series
Sine series
Haar series

The inner product

Define an operation (inner product) on the class of
complex-valued 2π-periodic and Riemann integrable functions

(f, g) =
1

2π

∫ 2π

0
f(θ)g(θ)dθ.

Particularly,

(f, f) =
1

2π

∫ 2π

0
|f(θ)|2dθ =

∥∥f
∥∥2

L2(T)
.
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The representation of Fourier series

Introduce the orthogonal system {em}m∈Z

em(θ) = eimθ.

The N-th partial sum of the Fourier series of f

SN (f)(θ) =
∑
|m|≤N

f̂(m)eimθ

=
∑
|m|≤N

1

2π

∫ 2π

0
f(y)e−imydy · eimθ

=
∑
|m|≤N

(f, em)eimθ.

ACM 07 Mean-square convergence of Fourier series



Square-mean convergence of Fourier series
Sine series
Haar series

The orthogonality

Basic lemma (
f − SN (f)

)
⊥em (|m| ≤ N)

Corollary 1: (The Pythagorean theorem)(
f − SN (f)

)
⊥SN (f)∥∥f

∥∥2

L2(T)
=

∥∥f − SN (f)
∥∥2

L2(T)
+

∥∥SN (f)
∥∥2

L2(T)

Corollary 2: (Best approximation)∥∥f − SN (f)
∥∥

L2(T)
≤

∥∥f − P
∥∥

L2(T)

(
(Degree)(P ) ≤ N

)
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The mean-square convergence of Fourier series

Case 1: Continuous functions
(Tools: The Weierstrass trigonometric polynomial theorem &
Best approximation)

Case 2: Riemann integrable functions
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The Parseval identity and the Riemann-Lebesgue lemma

The Parseval identity follows from the square-mean
convergence and Corollary 1:∥∥f

∥∥2

L2(T)
=

∑
m∈Z

|f̂(m)|2.

The Riemann-Lebesgue lemma follows from the Parseval
identity:

f̂(m) → 0 (|m| → ∞)
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Wonderful applications

A wonderful application:

π2

6
=

∞∑
n=1

1

n2

You can discover many new formulas!
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Have a rest for a moment!
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Another inner product on the other function space

Define an operation (inner product) on the class of
real-valued Riemann integrable functions on [0, π]

(f, g) =
1

π

∫ π

0
f(x)g(x)dx

Particularly,

(f, f) =
1

π

∫ π

0
|f(x)|2dx.
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The orthogonal system

Introduce the orthogonal system {en}n∈N

en(x) =
√

2 sin(nx).

Define the N-th partial sum of the “Fourier series” of f

SN (f) =
N∑

n=1

(f, en)en.
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The Bessel inequality

Combining (
SN (f), SN (f)

)
=

N∑
n=1

∣∣(f, en)
∣∣2

with the Pythagorean theorem

(f, f) =
(
SN (f), SN (f)

)
+

(
f − SN (f), f − SN (f)

)
yields the Bessel inequality

∞∑
n=1

∣∣(f, en)
∣∣2 ≤ (f, f).

ACM 07 Mean-square convergence of Fourier series



Square-mean convergence of Fourier series
Sine series
Haar series

An open question for 07 ACMer

Can you prove or disprove

∞∑
n=1

∣∣(f, en)
∣∣2 = (f, f)?

Do you have such a puzzel: Where is the cosine?!
I believe the resolution of this question could help you
understanding more better the structure of the inner product
spaces and their orthogonal systems.
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From Fourier to Haar
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The Haar system

Define an operation (inner product) on the class of
real-valued Riemann integrable functions on [0, 1]

(f, g) =

∫ 1

0
f(x)g(x)dx.

Particularly,

(f, f) =

∫ 1

0
|f(x)|2dx.
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The Haar system

The basic Haar function

Ψ(x) = sign(
1

2
− x) (0 ≤ x ≤ 1)

The Haar system

Ψ(x),
√

2Ψ(
x

2
),
√

2Ψ(
x

2
− 1

2
),

2Ψ(
x

4
), 2Ψ(

x

4
− 1

4
),2Ψ(

x

4
− 2

4
), 2Ψ(

x

4
− 3

4
),

· · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · , · · ·
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The Haar system

Define the N-th partial sum of the Haar series of f

SN (f) =
2N−1∑
n=1

(f, en)en.
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The Haar system

Theorem 1

lim
N→∞

∫ 1

0
|f − SN (f)|2dx = 0

holds for any Riemann integrable function f .

Theorem 2
lim

N→∞

(
sup

0≤x≤1

∣∣f − SN (f)
∣∣) = 0

holds for any continuous function g.
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The advantages (square integrable functions and continuous
functions) and defects (smooth functions) of Haar series

This would open the window of wavelet analysis.
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